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OVERVIEW



Vacuum expectation value of a quantum field perturbation       with inflationary Lagrangian     

 Free theory                                            is Gaussian

 Interacting theory                                                          is non-Gaussian

possible for all n, k-dependence characterises interactions

➟ Inflationary interactions are mapped to specific types of non-Gaussianity

NON-GAUSSIANITY FROM INFLATION
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As the universe expands, quantum fluctuations become classical 
perturbations    , whose probability density           is determined 
by the inflationary Lagrangian L

Constrain inflation by measuring these correlation functions in 
observations                      

� Pr[�]

h�k1 · · ·�kni =
Z

D[�]�k1 · · ·�knPr[�]

Bardeen potential in 
MDU, � = �3R/5

6df galaxy surveyPlanck
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NON-GAUSSIANITY FROM INFLATION

Primordial non-Gaussianity = 

Accelerator in the sky 

(reaching energy scale of inflation)



Advantages:
LSS = most promising window for non-Gaussianity after Planck
In principle more information than CMB because 3D
Lots of data available or coming up (e.g. BOSS, DES, Euclid, LSST, WFIRST, 
SKA, ...)
Single field inflation can be ruled out with halo bias (high sensitivity to 
squeezed limit of the bispectrum)

Complications:
Non-linear gravity produces late time non-Gaussianity
Non-linear evolution of primordial input non-Gaussianity
Difficult modeling and data analysis
Observational issues: Halo bias, redshifts space distortions, survey geometry, ...

Volker Springel

NON-GAUSSIANITY FROM INFLATION

Why measure in large-scale structures?
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Even in a (boring) Gaussian universe, non-Gaussianity from gravity is 
interesting

Distribution of dark matter is different from that of galaxies           ➟  “Galaxy bias”

Simplest ansatz:

3-point function pins down bias model & parameters (b1, b2, ...), 
which is required to do cosmology with LSS data

Break degeneracies of systematic effects or cosmological parameters that are present at the 
power spectrum (2-point) level 

➟ Improve cosmological parameter constraints 

NON-GAUSSIANITY FROM GRAVITY

�g(x) ⇠ b1�(x) +
1

2
b2�(x)

2 + · · ·



Late-time motivation for LSS non-Gaussianity: 

NON-GAUSSIANITY FROM GRAVITY

Fry 1994
Verde et al. 1997-2002
Scoccimarro et al. 1998
Sefusatti et al. 2006 

But: No large-scale structure non-Gaussianity (bispectrum) pipeline

        Complicated modeling (non-linear DM, bias, RSD, correlations, survey geometry, ...)

Galaxy power spectrum (2-point) Galaxy bispectrum (3-point)

Break b1-!m degeneracy, i.e. can 
measure Ωm from LSS alone

Measure b2

Cannot distinguish 
rescaling of P" from b1

➟ b1-!m degeneracy

From (naive)                                                                we get

": DM density
"g: galaxy density
b1: linear bias
b2: quadratic bias

�g(x) ⇠ b1�(x) +
1

2
b2�(x)

2 + · · ·

Pg(k) ⇡ b21P�(k) Bg(k1, k2, k3) ⇡ b31B�(k1, k2, k3) + b21b2(P�(k1)P�(k2) + perms)



3-POINT CORRELATIONS
(BISPECTRUM)



power spectrum             

h�(k1)�(k2)i = (2⇡)3�D(k1 + k2)P�(k1)

  2-point function:

statistical homogeneity

statistical isotropy

P�

POWER SPECTRUM + BISPECTRUM



power spectrum             

h�(k1)�(k2)�(k3)i = (2⇡)3�D(k1 + k2 + k3)fNLB�(k1, k2, k3)

h�(k1)�(k2)i = (2⇡)3�D(k1 + k2)P�(k1)

  2-point function:

statistical homogeneity

statistical isotropy

  3-point function:

P�

bispectrum B�

statistical isotropy

non-linear 
amplitude fNL

primary diagnostic for non-Gaussianity (vanishes for Gaussian    )�

POWER SPECTRUM + BISPECTRUM



BISPECTRUM

Bispectrum (3-point correlation function in Fourier space)
Defined for closed triangles (statistical homogeneity and isotropy)

h�(k1)�(k2)�(k3)i = (2⇡)3�D(k1 + k2 + k3)fNLB�(k1, k2, k3)

non-linear 
amplitude

bispectrum

k1 k2

k3
sum of the two smaller sides ≥ longest side 

(every point corresponds to a triangle config.)

)
k3

kmax

kmax k1

k2

Bispectrum domain = ‘tetrapyd’
(=space of triangle configurations)



BISPECTRUM SHAPES

)

k3

kmax

kmax k1

k2

Squeezed triangles (local shape)

Arises in multifield inflation; 
detection would rule out all 
single field models!

Different inflation models induce different momentum dependencies (shapes) of                      B�(k1, k2, k3)

k2 ⇡ k3 � k1

k1
k2

k3

Equilateral triangles

k1 ⇡ k2 ⇡ k3

k3

kmax

kmax k1

k2

k3

kmax

kmax k1

k2

Typically higher derivative 
kinetic terms, e.g. DBI inflation

Folded triangles

k3 = 2k1 = 2k2

k2

k3

k1

E.g. non-Bunch-Davies vacuum



bispectrum drawn on space of 
triangle configurations



NON-GAUSSIANITY 
IN 

LARGE SCALE STRUCTURES
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Use perturbation theory on large scales:

�n(k) =

Z
d3q1 · · ·

Z
d3qn�D(k� q1 � · · ·� qn)F

(s)
n (q1, . . . ,qn)�1(q1) · · · �1(qn)

�(k, t) =
1X

n=1

D(t)n�n(k)

D(t) = linear growth factor (             during matter domination)= a(t)

F (s)
n =

where

kernels determined by Newtonian equations of motion 

GRAVITATIONAL NG

e.g. Bernardeau, 
Colombi, Gaztanaga, 
Scoccimarro 2002

http://arxiv.org/find/astro-ph/1/au:+Bernardeau_F/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Bernardeau_F/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Colombi_S/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Colombi_S/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Gaztanaga_E/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Gaztanaga_E/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Scoccimarro_R/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Scoccimarro_R/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Scoccimarro_R/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Scoccimarro_R/0/1/0/all/0/1


For Gaussian initial conditions (Gaussian     ) the leading order bispectrum 
from gravity is

�1

h�(k1, t)�(k2, t)�(k3, t)i = D4(t)h�1(k1)�1(k2)�2(k3)i+ 2 perms

P�(k1; t) ⌘ (2⇡)3�D(k1 + k2)D
2(t)h�1(k1)�1(k2)i k1 · k2 =

1

2
(k23 � k21 � k22)

from (v ·r)v in Euler eqn.from r� · v in continuity eqn.

F (s)
2 (k1,k2) =

10

14
+

1

2

k1 · k2

k1k2

✓
k1
k2

+
k2
k1

◆
+

2

7

✓
k1 · k2

k1k2

◆2

maximum for                  (folded) ,   0 for                     (squeezed)k1 = k2 k1 = �k2

GRAVITATIONAL NG

) Bgrav
� (k1, k2, k3) = 2P�(k1; t)P�(k2; t)F

(s)
2 (k1,k2) + 2 perms



NG IN LSS

full matter 
bispectrum

B� = Bgrav
� + Bprim

�
gravitational primordial 



Relation to density perturbation with Poisson equation (in linear theory):

linear matter transfer function
(=1 on very large scales)

linear growth function 
(= a(t) during matter domination)

�(k, t) =
2

3

c2k2T (k)D(t)

⌦mH2
0

�(k) ⌘ M(k, t)�(k)

) Bprim
� (k1, k2, k3; t) = M(k1, t)M(k2, t)M(k3, t)FNLB�(k1, k2, k3)

linear transfer primordiallate time

time dependence:                                                             Bprim
� / D3(t), Bgrav

� / D4(t)

 easier to see primordial contribution at earlier times (high z)

PRIMORDIAL NG



initial field with 
primordial non-

Gaussianity
2LPT initial particle 

positions
N

-body

late time density 
perturbation

bispectrum estimator
reconstructed 

bispectrum and 
fB
NL

S. Pueblas, 
R. Scoccimarro,

V. Springel Gadget-3 by 
V. Springel

SIMULATION SETUP
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INITIAL CONDITIONS: MATHS

Aim: Create non-Gaussian field          
full field Gaussian 
�(x) = �G(x) + �NG(x)

non-Gaussian part

Simplest case: local non-Gaussianity �(x) = �G(x) + fNL(�
2
G(x)� h�2

Gi)

General case: arbitrary bispectrum

Wagner et al 2010

B�

�NG(k) =
fNL

2

Z
d3k0d3k00

(2⇡)3
�D(k� k0 � k00)WB(k, k

0, k00)�G(k
0)�G(k

00)

(=2 in local case)WB(k, k
0, k00) ⌘ B�(k, k0, k00)

P�(k)P�(k0) + P�(k)P�(k00) + P�(k0)P�(k00)

Symmetrisation required to 
preserve power spectrum



SPEED?

Non-separable bispectrum kernel: WB(k, k
0, k00) =

1

k + k0 + k00

) �NG(k) ⇠
Z

d3k0d3k00 1

k + k0 + k00
�G(k

0)�G(k
00)

➟ SLOW: different integral over k’ for every k, i.e. ~N2 operations

(k’’ = -k-k’)

N = total # ptcles

⇠ 109
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�
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SPEED?

Non-separable bispectrum kernel: WB(k, k
0, k00) =

1

k + k0 + k00

) �NG(k) ⇠
Z

d3k0d3k00 1

k + k0 + k00
�G(k

0)�G(k
00)

➟ SLOW: different integral over k’ for every k, i.e. ~N2 operations

Separable bispectrum kernel: WB(k, k
0, k00) = kk0k00

) �NG(k) ⇠
Z

d3k0d3k00kk0k00�G(k
0)�G(k

00)

= k

Z
d3k0k0�G(k

0)

�
⇥

Z
d3k00k00�G(k

00)

�

➟ FAST: two 3D integrals, i.e. ~N operations

(k’’ = -k-k’)

N = total # ptcles

⇠ 109Separability = Efficiency



FAST INITIAL CONDITIONS
Fergusson, Regan, Shellard PRD 86, 063511 (2012), arXiv: 1008.1730
Regan, MS, Shellard, Fergusson PRD 86, 123524 (2012), arXiv:1108.3813

Need ~N2 operations in general, but only ~N operations if WB was separable:

WB(k, k
0, k00) = f1(k)f2(k

0)f3(k
00) + perms

Expand WB in separable basis functions to get ~N scaling for any* bispectrum:

*Scoccimarro and Verde groups try to rewrite WB analytically in separable form; this works sometimes, but not in general

N = total # ptcles ⇡ 10

9

↵0= +↵1 +↵2

Note: Actually we plot an orthonormalised version of         hereQn

+ · · ·+ ↵n
max

WB

WB(k,k’,k’’) on space of triangle 
configurations

expansion in separable basis functions
(decorrelate for convenience; around 100 basis functions 
represent all investigated bispectra with high accuracy)

= ↵0+↵1kk
0k00 +↵2(kk

0k00)2 + · · ·



INITIAL CONDITIONS

Fast and general non-Gaussian initial conditions for N-body simulations
Arbitrary (including non-separable) bispectra, diagonal-independent trispectra

This is the only method to simulate structure formation for general inflation models to date

Idea:

↵0= +↵1 +↵2

Note: Actually we plot an orthonormalised version of         hereQn

+ · · ·+ ↵n
max

WB

bispectrum drawn on space of 
triangle configurations

expansion in separable, uncorrelated basis functions
(around 100 basis functions represent all investigated 

bispectra with high accuracy)

Regan, MS, Shellard, Fergusson PRD 86, 123524 (2012), arXiv:1108.3813



NON-GAUSSIAN N-BODY SIMS

• Generate non-Gaussian density
• Convert to initial particle positions and velocities by applying 2LPT to glass 

configuration or regular grid (spurious bispectrum at high z decays at low z)
• Feed into Gadget3

Application: 
MS, Regan, Shellard 1207.5678 

4.5 Simulation setup, initial conditions and validation

Name NG
shape

fNL L[Mpc
h

] Np zi Ls[
kpc
h

] Nr glass

G512g – – 1600 512 49 156 3 yes
G512 – – 1600 512 49 156 3 no
G512

L – – {400, 100} 512 49 {39, 9.8} 3 no
G768 – – 2400 768 19 90 3 no
G1024 – – 1875 1024 19 40 2 no
Loc10g local 10 1600 512 49 156 3 yes
Loc10 local 10 1600 512 49 156 3 no
Loc10512

L local 10 {400, 100} 512 49 {39, 9.8} 3 no
Loc10� local �10 1600 512 49 156 3 no
Loc20 local 20 1600 512 49 156 3 no
Loc50 local 50 1600 512 49 156 3 no
Eq100g equil 100 1600 512 49 156 3 yes
Eq100 equil 100 1600 512 49 156 3 no
Eq100512

L equil 100 {400, 100} 512 49 {39, 9.8} 3 no
Eq100� equil �100 1600 512 49 156 3 no
Orth100g orth 100 1600 512 49 156 3 yes
Orth100 orth 100 1600 512 49 156 3 no
Orth100512

400 orth 100 400 512 49 39 3 no
Orth100� orth �100 1600 512 49 156 3 no
Flat10 flat 10 1600 512 49 156 3 no
Flat10512

400 flat 100 400 512 49 39 3 no

Table 4.2: Parameters of N -body simulations: Non-linearity parameter fNL, box
size L, number of particles per dimension Np, initial redshift of the simulations
zi, softening length Ls and number of realisations (i.e. random seeds) Nr for each
parameter set. ‘glass’ indicates if the initial particles were displaced from a regular
grid or from a glass configuration. Initial conditions for non-local non-Gaussian
simulations were generated with the separable method described in [1, 56]. All
simulations use 2LPT [6, 134] to get the initial particle distribution, which is then
evolved with Gadget-3 [4, 5].
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BISPECTRUM ESTIMATION: MATHS
Fergusson, Shellard et al. 2009-2012
MS, Regan, Shellard 1207.5678 

Likelihood for fNL given a density perturbation δk

Maximise w.r.t. fNL (given a theoretical bispectrum          )

Requires ~N2 operations in general, but only ~N operations if            was separable

➟ Measure amplitudes       of separable basis functions

➟ Combine them to reconstruct full bispectrum from the data:

L /
Z

d3k1

(2⇡)3
d3k2

(2⇡)3
d3k3

(2⇡)3

2

641�
1

6
h�k1�k2�k3i| {z }

/fNLB�

@

@�k1

@

@�k2

@

@�k3

+ · · ·

3

75
1p

detC

Y

ij

e�
1
2 �

⇤
ki

(C�1)ij�kj

/ P�

f̂
Btheo

�
NL =

1

NfNL

Z
d3k

1

(2⇡)3
d3k

2

(2⇡)3
d3k

3

(2⇡)3
(2⇡)3�D(k

1

+ k
2

+ k
3

)Btheo

� (k
1

, k
2

, k
3

)�k
1

�k
2

�k
3

P�(k1)P�(k2)P�(k3)

Btheo

�

Btheo

�

where                                 ,                                                               ,                                                                  �R
n ⌘

X

m

�nm�Q
m Mr(x) ⌘

Z
d3k

(2⇡)3
eikx

qr(k)�obs
kp

kP�(k)
�Q
m ⌘

Z
d3xMr(x)Ms(x)Mt(x)

B̂(k1, k2, k3) =
X

n

�R
n

s
P�(k1)P�(k2)P�(k3)

k1k2k3
Rn(k1, k2, k3)

depends on data

�R
n

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678


BISPECTRUM ESTIMATION

Fast and general bispectrum estimator for N-body simulations 
MS, Regan, Shellard 1207.5678 

Measure ~100 fNL amplitudes of 
separable basis shapes, combine them to 
reconstruct the full bispectrum

Scales like 100xN instead of N2, where 
N~109 (speedup by factor ~107)

Can estimate bispectrum whenever 
power spectrum is typically measured

Validated against PT at high z

Useful compression to ~100 numbers

Automatically includes all triangles

Loss of total S/N due to truncation of 
basis is only a few percent 
(could be improved with larger basis; for ~N 
basis functions the estimator would be exact)

Theory

Expansion 
of theory

N-body

Gravity Excess bispectrum 
for local NGz=30

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678
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CONSISTENCY CHECK

Generate non-Gaussian field      and estimate its bispectrum, both with 
separable mode expansion (no time evolution)

Regan, MS, Shellard, Fergusson 1108.3813

�

more shapes and generalisation to trispectrum: 1108.3813

3.5 Conclusions
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Figure 3.2: Theoretical expansion coe�cients ↵R0
n from (3.18) compared with the

average estimated coe�cients h�R
n i from 5 realisations in a box with N = 512 and

L = 100Mpc/h. Left: Local bispectrum shape with fNL = 100, right: equilateral
shape with fNL = 500. Note that the left plot di↵ers from the one shown in [1]
because we use a di↵erent ordering of polynomials here and use di↵erent box and
grid size. The error bars show 1� errors. The lower panels show residual plots.

which reduces the generation of initial conditions to a series of e�cient Fourier

transforms. It requires O(nmaxN3) operations, where N = O(1000) is the number

of grid points per dimension and nmax = O(30� 100) is the number of basis func-

tions which is kept in the expansion of the bispectrum. The computational cost is

therefore reduced by a factor of O(107) compared to a brute force approach which

requires O(N6) operations and has been used in the literature so far. We have

validated our implementation for the local, equilateral, orthogonal, constant and

non-separable flattened bispectrum shapes with a non-trivial consistency check

by comparing the bispectra of the initial conditions with the input bispectra.

We note that further work is required to represent arbitrary trispectra to-

gether with arbitrary bispectra in the initial conditions because the bispectrum

term fNL�B/2 in (3.1) introduces a spurious trispectrum which is non-trivial to

mitigate (see [164] for first attempts in this direction for a few specific shapes).

We could subtract this spurious trispectrum if the presented methods are gener-

alised to trispectra which also depend on the diagonal of the quadrilateral, which

is in principle straightforward though computationally challenging.

We hope that the work presented here proves useful for studying large-scale

structures with N -body simulations in presence of arbitrary primordial bispectra.
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MS, Regan, Shellard 1207.5678 

3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004 - 0.5 h/Mpc

Plot S/N weighted bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

z=30 Tree level theory N-body

GAUSSIAN SIMULATIONS
COMPARISON WITH TREE LEVEL
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3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004 - 0.5 h/Mpc

Plot S/N weighted bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

Tree level theory N-bodyz=2

GAUSSIAN SIMULATIONS
COMPARISON WITH TREE LEVEL
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MS, Regan, Shellard 1207.5678 

3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004 - 0.5 h/Mpc

Plot S/N weighted bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

Tree level theory N-bodyz=0

GAUSSIAN SIMULATIONS
COMPARISON WITH TREE LEVEL

http://arxiv.org/abs/1207.5678
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GAUSSIAN SIMULATIONS
ON SMALL SCALES

MS, Regan, Shellard 1207.5678 

3 realisations of 5123 particles in a L = 400 Mpc/h box with zinit = 49 and k = 0.016 - 2.0 h/Mpc

Plot S/N weighted bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

N-body N-body N-body

z=1 z=0z=2

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678
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DM density

GAUSSIAN SIMULATIONS
COMPARISON WITH DARK MATTER

5123 particles in a L = 400 Mpc/h box with zinit = 49 and k = 0.016 - 2 h/Mpc

Plot DM density in (40 Mpc/h)3 subbox and bispectrum signal
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

DM bispectrum

22

(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.

40 Mpc/h
40 

Mpc/h

22

(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.

z=4
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DM density

GAUSSIAN SIMULATIONS
COMPARISON WITH DARK MATTER

5123 particles in a L = 400 Mpc/h box with zinit = 49 and k = 0.016 - 2 h/Mpc

Plot DM density in (40 Mpc/h)3 subbox and bispectrum signal
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

DM bispectrum

22

(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.
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(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.
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DM density

GAUSSIAN SIMULATIONS
COMPARISON WITH DARK MATTER

5123 particles in a L = 400 Mpc/h box with zinit = 49 and k = 0.016 - 2 h/Mpc

Plot DM density in (40 Mpc/h)3 subbox and bispectrum signal
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

22

(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.
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(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 10. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512

400

simulations at redshifts z = 4, 2 and 0, from top
to bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc  k  2h/Mpc, averaged over the simulation
on the left and two additional seeds.

z=0
DM bispectrum
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GAUSSIAN SIMULATIONS
SUMMARY

Summary Gaussian N-body simulations

z=4

z=0

DM density DM bispectrum 
signal

pancakes

enhanced 
equilateral

filaments 
& clusters

flattened

MS, Regan, Shellard 1207.5678 

Measured gravitational DM bispectrum 
for all triangles down to k=2hMpc-1

Non-linearities mainly enhance 
‘constant’ 1-halo bispectrum

Bispectrum characterises 3d DM 
structures like pancakes, filaments, 
clusters

Self-similarity
(constant contribution appears towards late 
times at fixed length scale, and towards small 
scales at fixed time)

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678


NON-GAUSSIAN

SIMULATIONS



Tree level theory N-body

3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004-0.5 h/Mpc, fNL=10

Plot S/N weighted excess bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

z=30

LOCAL NON-GAUSSIAN SIMS
MS, Regan, Shellard 1207.5678 

http://arxiv.org/abs/1207.5678
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Tree level theory N-body

3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004-0.5 h/Mpc, fNL=10

Plot S/N weighted excess bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

z=2

LOCAL NON-GAUSSIAN SIMS
MS, Regan, Shellard 1207.5678 
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Tree level theory N-body

3 realisations of 5123 particles in a L = 1600 Mpc/h box with zinit = 49 and k = 0.004-0.5 h/Mpc, fNL=10

Plot S/N weighted excess bispectrum
p
k1k2k3B�(k1, k2, k3)/

p
P�(k1)P�(k2)P�(k3)

z=0

LOCAL NON-GAUSSIAN SIMS
MS, Regan, Shellard 1207.5678 
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OTHER SHAPES

Excess DM bispectra for other non-Gaussian initial conditions

multiple fields higher derivative operators non-standard vacuum

MS, Regan, Shellard 1207.5678 

z=0, kmax=0.5hMpc-1, 5123 particles
Non-linear regime:

Tree level shape is enhanced by non-linear power spectrum

Additional ~constant contribution to bispectrum signal

Quantitative characterisation with cumulative S/N and 3d shape correlations in 1207.5678

multiple fields
(local)

higher derivatives
(equilateral)

non-standard vacuum
(flattened)

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678


Introduce scalar product             , shape correlation     and norm C

hBi, Bjiest ⌘
V

⇡

Z

VB

dk1dk2dk3
k1k2k3Bi(k1, k2, k3)Bj(k1, k2, k3)

P�(k1)P�(k2)P�(k3)

h·, ·iest

C(Bi, Bj) ⌘
hBi, Bjiestp

hBi, BiiesthBj , Bjiest
2 [�1, 1]

if                               then 
estimator for       cannot 
find any         and vice versa

Babich et al. 2004, Fergusson, Regan, Shellard 2010

||B|| ⌘
p
hB,Biest

||B||

total integrated S/N

|C(B1, B2)| ⌧ 1
B1

B2

) hf̂Btheo

NL

i = C(Bdata

� , Btheo

� )
||Bdata

� ||
||Btheo

� ||
projection of 
data on theory

SIMILARITY OF SHAPES
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TIME SHIFT MODEL

Time shift model

Non-Gaussian universe evolves slightly faster 
(or slower) than Gaussian universe

Halos form earlier (later) in presence of 
primordial non-Gaussianity

Primordial non-Gaussianity gives growth of the 
1-halo bispectrum a ‘headstart’ (or delay)

1-halo
bispectrum 

at z

1-halo
bispectrum 

at z+Δz

Gaussian universeNon-Gaussian universe

=

MS, Regan, Shellard 1207.5678 

Motivates simple form of non-Gaussian excess bispectrum:

BNG
� =

r
PNL

� (k1)P
NL
� (k2)P

NL
� (k3)

P�(k1)P�(k2)P�(k3)
B�(k1, k2, k3)

| {z }
perturbative with non-linear power

+c�z@z[D
nh

(z)](k1 + k2 + k3)
⌫

| {z }
time shifted 1-halo term

See Valageas for similar philosophy in 
Gaussian case (combing PT+halo model)

http://arxiv.org/abs/1207.5678
http://arxiv.org/abs/1207.5678


FITTING FORMULAE

Simple fitting formulae for grav. and primordial DM bispectrum shapes
Valid at 0 ≤ z ≤ 20, k ≤ 2hMpc-1 
3d shape correlation with measured shapes is ≥ 94.4% at 0 ≤ z ≤ 20 and ≥ 98 % at z=0 
(≥ 99.8% for gravity at 0 ≤ z ≤ 20)

Only ~3 free parameters per inflation model (local, equilateral, flattened, [orthogonal])

MS, Regan, Shellard 1207.5678 

Overall amplitude needs 
to be rescaled by (poorly 
understood) time-
dependent prefactor;
extends Gil-Marin et al 
formula to smaller scales 
and NG ICs

⌫ ⇡ �1.7

BNG
� =

r
PNL

� (k1)P
NL
� (k2)P

NL
� (k3)

P�(k1)P�(k2)P�(k3)
B�(k1, k2, k3)

| {z }
perturbative with non-linear power

+c�z@z[D
nh

(z)](k1 + k2 + k3)
⌫

| {z }
time shifted 1-halo term
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Figure 15. Motivation for using the growth function D̄ in the simple fitting formula (64). The arbitrary weight w(z) in Bopt

� =

Bgrav

�,NL

+w(z)(k
1

+ k
2

+ k
3

)⌫ is determined analytically such that C(B̂� , B
opt

� ) is maximal (for ⌫ = �1.7). We plot kBgrav

�,NL

k (black dotted),

kw(z)(k
1

+ k
2

+ k
3

)⌫k (green) and Bgrav

�,const (black dashed) as defined in (14) with fitting parameters given in Table IV, illustrating that

w(z) = c
1

D̄nh (z) is a good approximation. The continuous black and red curves show kBfit

� k from (64) and the estimated bispectrum size

kB̂�k, respectively. The overall normalisation can be adjusted with N
fit

as explained in the main text.

Simulation L[Mpc

h

] c
1,2 n(prim)

h min
z20

C�,↵ C�,↵
(z=0)

G512g 1600 4.1⇥ 106 7 99.8% 99.8%

Loc10 1600 2⇥ 103 6 99.7% 99.8%

Eq100 1600 8.6⇥ 102 6 97.9% 99.4%

Flat10 1600 1.2⇥ 104 6 98.8% 98.9%

Orth100 1600 �3.1⇥ 102 5.5 91.0% 91.0%

G512

400

400 1.0⇥ 107 8 99.8% 99.8%

Loc10512
400

400 2⇥ 103dD/da 7 98.2% 99.0%

Eq100512
400

400 8.6⇥102dD/da 7 94.4% 97.9%

Flat10512
400

400 1.2⇥104dD/da 7 97.7% 99.1%

Orth100512
400

400 �2.6⇥ 102 6.5 97.3% 98.9%

Table IV. Fitting parameters c
1

and nh for the fit (64) of
the matter bispectrum for Gaussian initial conditions (sim-
ulations G512g and G512

400

) and c
2

and nprim

h for the fit (69)
of the primordial bispectrum (58). The two columns on the
right show the minimum shape correlation with the mea-
sured (excess) bispectrum in N -body simulations, which was
measured at redshifts z = 49, 30, 20, 10, 9, 8, . . . , 0, and the
shape correlation at z = 0. For the equilateral case the mini-
mum shape correlation can be improved to 99.4% if the term
4.6 ⇥ 10�5f

NL

D̄(z)0.5
⇥
2P�(k1)P�(k2)F

(s)
2

(k
1

,k
2

) + 2 perms
⇤

is added to (69).

information. All we require is the time dependence or
growth rate of the bispectrum amplitude. As a first step,
the fitting formula (65) can be normalised to the mea-
sured bispectrum size by multiplying it with the normal-
isation factor

Nfit ⌘ kB̂k
kBfit

� k , (66)

which is shown by the dotted line in the lower panels of
Fig. 16. While it varies with redshift between 0.7 and
1.4 for kmax = 2h/Mpc, it deviates by at most 8% from
unity for kmax = 0.5h/Mpc. The lower panels also show
the measured integrated bispectrum size kB̂k and the
two individual contributions to (64) when the normalisa-
tion factor Nfit is included. These quantities are divided
by kBgrav

�,NLk for convenience. At high redshifts the total
bispectrum size is essentially given by the contribution
from Bgrav

�,NL, which equals the tree level prediction for the
gravitational bispectrum in this regime. The contribu-
tion from Bconst

� dominates at z  2 for kmax = 2h/Mpc
when filamentary and spherical nonlinear structures are
apparent. A similar transition can be seen at later times
on larger scales in Fig. 16a, indicating self-similar be-
haviour.

It is worth noting that the high integrated corre-
lation between the simple fit (64) and measurements
does not imply that all triangle configurations agree per-
fectly and sub-percent level di↵erences between shape
correlations can in principle contain important informa-
tion, e.g. about the observationally relevant squeezed
limit which only makes a small contribution to the to-
tal tetrapyd integral over the signal-to-noise weighted
dark matter bispectrum. However, if we observed the
dark matter bispectrum directly, these shapes would be
hard to distinguish because the shape correlation con-
tains the signal-to-noise weighting. Modified shape cor-
relation weights and additional basis functions have been
used for better quantitative comparison of the squeezed
limit of dark matter bispectra, but this is left for a future
publication.

Quality of fit:
all z      z=0
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Figure 15. Motivation for using the growth function D̄ in the simple fitting formula (64). The arbitrary weight w(z) in Bopt

� =

Bgrav

�,NL

+w(z)(k
1

+ k
2
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3

)⌫ is determined analytically such that C(B̂� , B
opt

� ) is maximal (for ⌫ = �1.7). We plot kBgrav

�,NL

k (black dotted),

kw(z)(k
1

+ k
2

+ k
3

)⌫k (green) and Bgrav

�,const (black dashed) as defined in (14) with fitting parameters given in Table IV, illustrating that

w(z) = c
1

D̄nh (z) is a good approximation. The continuous black and red curves show kBfit

� k from (64) and the estimated bispectrum size

kB̂�k, respectively. The overall normalisation can be adjusted with N
fit

as explained in the main text.

Simulation L[Mpc

h

] c
1,2 n(prim)

h min
z20

C�,↵ C�,↵
(z=0)

G512g 1600 4.1⇥ 106 7 99.8% 99.8%

Loc10 1600 2⇥ 103 6 99.7% 99.8%

Eq100 1600 8.6⇥ 102 6 97.9% 99.4%

Flat10 1600 1.2⇥ 104 6 98.8% 98.9%

Orth100 1600 �3.1⇥ 102 5.5 91.0% 91.0%

G512

400

400 1.0⇥ 107 8 99.8% 99.8%

Loc10512
400

400 2⇥ 103dD/da 7 98.2% 99.0%

Eq100512
400

400 8.6⇥102dD/da 7 94.4% 97.9%

Flat10512
400

400 1.2⇥104dD/da 7 97.7% 99.1%

Orth100512
400

400 �2.6⇥ 102 6.5 97.3% 98.9%

Table IV. Fitting parameters c
1

and nh for the fit (64) of
the matter bispectrum for Gaussian initial conditions (sim-
ulations G512g and G512

400

) and c
2

and nprim

h for the fit (69)
of the primordial bispectrum (58). The two columns on the
right show the minimum shape correlation with the mea-
sured (excess) bispectrum in N -body simulations, which was
measured at redshifts z = 49, 30, 20, 10, 9, 8, . . . , 0, and the
shape correlation at z = 0. For the equilateral case the mini-
mum shape correlation can be improved to 99.4% if the term
4.6 ⇥ 10�5f

NL

D̄(z)0.5
⇥
2P�(k1)P�(k2)F

(s)
2

(k
1

,k
2

) + 2 perms
⇤

is added to (69).

information. All we require is the time dependence or
growth rate of the bispectrum amplitude. As a first step,
the fitting formula (65) can be normalised to the mea-
sured bispectrum size by multiplying it with the normal-
isation factor

Nfit ⌘ kB̂k
kBfit

� k , (66)

which is shown by the dotted line in the lower panels of
Fig. 16. While it varies with redshift between 0.7 and
1.4 for kmax = 2h/Mpc, it deviates by at most 8% from
unity for kmax = 0.5h/Mpc. The lower panels also show
the measured integrated bispectrum size kB̂k and the
two individual contributions to (64) when the normalisa-
tion factor Nfit is included. These quantities are divided
by kBgrav

�,NLk for convenience. At high redshifts the total
bispectrum size is essentially given by the contribution
from Bgrav

�,NL, which equals the tree level prediction for the
gravitational bispectrum in this regime. The contribu-
tion from Bconst

� dominates at z  2 for kmax = 2h/Mpc
when filamentary and spherical nonlinear structures are
apparent. A similar transition can be seen at later times
on larger scales in Fig. 16a, indicating self-similar be-
haviour.

It is worth noting that the high integrated corre-
lation between the simple fit (64) and measurements
does not imply that all triangle configurations agree per-
fectly and sub-percent level di↵erences between shape
correlations can in principle contain important informa-
tion, e.g. about the observationally relevant squeezed
limit which only makes a small contribution to the to-
tal tetrapyd integral over the signal-to-noise weighted
dark matter bispectrum. However, if we observed the
dark matter bispectrum directly, these shapes would be
hard to distinguish because the shape correlation con-
tains the signal-to-noise weighting. Modified shape cor-
relation weights and additional basis functions have been
used for better quantitative comparison of the squeezed
limit of dark matter bispectra, but this is left for a future
publication.
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-� values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter �CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

�bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

�ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100�MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

� . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

�� . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

�m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

�mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z� . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100�� . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 2.2: CMB temperature power spectrum measured by Planck (red points),
including cosmic variance error (shaded green) and best-fit ⇤CDM model predic-
tion (solid green). The plot is from [76].

2.3 CMB lensing

We have so far neglected the gravitational deflection of CMB photons by inter-

vening large-scale structures on their way from the last-scattering surface to the

observer, because the RMS deflection of CMB photons is only ⇠ 2.5 arcmin, which

is a small e↵ect. However, these deflections are coherent over scales of several

degrees and the e↵ect of lensing on the CMB power spectrum is large enough that

it must be included for high-resolution CMB experiments like Planck to obtain

accurate cosmological parameter estimates. Indeed, lensing of the CMB can be

exploited as a precious probe of the inhomogeneous distribution of dark matter

along the line of sight which is otherwise hard to observe. Since most of the lens-

ing e↵ect is caused by dark matter structures around redshift z ⇠ 2, CMB lensing

can be used to break degeneracies that a↵ect the primary CMB to improve con-

straints on spatial curvature, neutrino masses, dark energy and modified gravity

(see e.g. [77, 78, 79, 80, 81, 82, 83, 84], and Section 2.3.3 below). For example,

recent lensing reconstructions provide evidence for dark energy from the CMB
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Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-

3

CMB photons are deflected by the inhomogeneous distribution of DM 
along the line of sight:

Deflection = gradient of lensing potential φ (integral over matter 
perturbations along the line of sight)  

ESA and Planck 
Collaboration
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where the s is a place holder denoting either the ISW
or SZ contribution.

B. SZ Trispectrum

In addition to the lensing contributions to the trispec-
trum above, we consider contributions from the inverse
Compton scattering of the CMB photons. The SZ con-
tribution to the trispectrum is given by [17, 25]:

TΘ
ij = g4ν

∫ zmax

0

dz
dV

dz

∫ Mmax

Mmin

dM
dn(M, z)

dM

× |ỹi(M, z)|2 |ỹj(M, z)|2 , (8)

where gν is the spectral function of the SZ effect,
V (z) is the comoving volume of the universe integrated
to a redshift of zmax = 4, M is the virial mass such
that [log10(Mmin), log10(Mmax)] = [11, 16], dn/dM is the

FIG. 1: The impact of varying the lensing scaling parameter
on the lensed CMB temperature power spectrum, for AL =
[0,2,5,10].

mass function of dark matter halos as rendered by [18]
utilizing the linear transfer function of [19], and ỹ is the
dimensionless two-dimensional Fourier transform of the
projected Compton y-parameter, given via the Limber
approximation [20] by:

ỹl =
4πrs
l2s

∫ ∞

0

dxx2y3D(x)
sin(lx/ls)

lx/ls
, (9)

where the scaled radius x = r/rs and ls = dA/rs such
that dA is the angular diameter distance and rs is the
scale radius of the three-dimensional radial profile y3D
of the Compton y-parameter. This profile is a function
of the gas density and temperature profiles as modeled
in [21]. Hence, we incorporate the contributions obtained
from the SZ effect along with those from lensing, lensing-
ISW, and lensing-SZ effects to the covariance matrix in
Eqn. 3.

C. The Weak Lensing Scaling Parameter AL

To first order in φ, the weak lensing of the CMB
anisotropy trispectrum can be expressed as the con-
volution of the power spectrum of the unlensed tem-
perature Cl and that of the weak lensing potential
Clφφ [15, 22, 23]. The magnitude of the lensing poten-
tial power spectrum can be parameterized by the scaling
parameter AL, defined as

Cφφ
l → ALC

φφ
l . (10)

Thus, AL is a measure of the degree to which the ex-
pected amount of lensing appears in the CMB, such that
a theory with AL = 0 is devoid of lensing, while AL = 1
renders a theory with the canonical amount of lensing.
Any inconsistency with unity represents an unexpected
amount of lensing that needs to be explained with new
physics, such as dark energy or modified gravity [15, 24].
The impact of this scaling parameter on the lensed CMB
temperature power spectrum can be seen in Fig. 1. Qual-
itatively, AL smoothes out the peaks in the power spec-
trum and can therefore also be viewed as a smoothing
parameter in addition to its scaling property. Given that
AL primarily affects the temperature power spectrum on
small angular scales, we also explore the possibility that
it deviates from unity as secondary non-Gaussianities are
accounted for in the analysis.

Fig. from Smidt et al. 0909.3515

Acoustic peaks/troughs are smoothed 
out by lensing
(since lensed          = convolution of unlensed 
CTT and C##)

C T̃ T̃
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maps). To match the power spectrum of these simulations to the
power spectrum of the data maps, we find it is necessary to add
extragalactic foreground power following the model in Sect. 4,
with Acib = 18 µK2 and Asrc = 28 µK2. The resulting simula-
tions have a power spectrum which agrees with that of the CMB
map estimate based on the data to better than 2% at l < 2048.
This could be improved slightly by tailoring a specific correc-
tion for each map. We also add homogeneous pixel noise with a
level of 12 µK arcmin. If we neglected this power, the agreement
would be only at the 8% level, primarily due to the noise term
(the Acib and Asrc contributions are each at the level of 1 � 2%).
Due to the procedure which we use to subtract the disconnected
noise bias (Eq. 17) from our lensing power spectrum estimates,
the inclusion of these components does not significantly a↵ect
our results, but comparison with the values used for our single-
frequency simulations in Sect. 4 are a useful indicator of the ex-
tent to which the foreground separation algorithms are able to
remove extragalactic foreground power in the high-` regime.

As already discussed, our results on the component-
separated CMB maps are presented in Fig. 18. Because the
CMB and FFP6 noise components of the foreground-cleaned
map simulations are the same as those used to characterize
our fiducial lens reconstruction, we can measure the expected
scatter between the foreground separated maps and our fidu-
cial reconstruction. This scatter will be slightly overestimated
because we have not attempted to coherently model the con-
tribution to the reconstruction noise from residual di↵use ex-
tragalactic foreground power. For the eight bins in 40  L 
400 on which our fiducial likelihood is based, we measure a
�2 for the di↵erence between our fiducial reconstruction and
the corresponding foreground-cleaned reconstruction of �2 =
(3.14, 4.3, 2.5, 14.7) for nilc, smica, sevem, and ruler respec-
tively. These �2 values associated have probability-to-exceed
(PTE) values of (79%, 64%, 86%, 2%) respectively. At the level
which we are able to test, the nilc, smica, and sevem foreground-
cleaned maps give results which are quantitatively consistent
with our fiducial reconstruction. There is more scatter between
our fiducial reconstruction and the ruler map than expected
from simulations, as evidenced by a very high �2 for the dif-
ference, however as can be seen in Fig. 18, there are not any
clear systematic di↵erences. Indeed, the discrepancy for the bins
plotted in Fig. 18 (which di↵er somewhat from the linear bins
used in our likelihood) is much less significant than for the bins
of our fiducial likelihood.

When using the component separated maps above, we have
used the same fsky = 0.7 Galactic mask as for our MV result, al-
though the confidence regions associated with each foreground
cleaned map allow more sky, ranging up to fsky = 0.94 for the
nilc method. We have used the metis pipeline (described later
in Sect. 7.5) to test whether this improved sky coverage could
benefit our lens reconstruction. The same method has been used
in (Planck Collaboration XII 2013) to evaluate possible biases
to lens reconstruction induced by these methods using the FFP6
simulated CMB realization, described in Planck Collaboration I
(2013), indicating that the di↵erent component separation algo-
rithms do not alter significantly the lensing signal (at the level
which can be tested on a single simulation). Analyzing the nilc
map, which has the largest confidence region, we find that we
can increase the usable sky surface up to fsky = 0.87 without
encountering significant Galactic contamination. In Fig. 19 we
show the striking improvement in sky coverage on the nilc map.
smica and sevem are very similar; we have not considered ruler
because of its larger noise level.

Power spectrum estimates at this mask level show consis-
tency with the MV reconstruction within two standard devia-
tions of the measurement uncertainty. The increased sky cover-
age does not bring significant improvements in the error-bars of
the power spectrum, however. Using Eq. 20 as an estimate of the
power spectrum variance, the larger sky coverage yields only a
3.5% improvement at L < 40 over the MV result, decreasing
down to 0 at L = 400. This could be due to the di↵erent weight-
ing used in the component separation compared to the one of
the MV map, which results in slightly noisier maps for our pur-
pose. While the component separated maps allow for a reduced
mask maintaining a robust lensing potential estimation, they lead
to a marginal improvement of the power spectrum uncertainties.
Nevertheless, their agreement with the MV result is reassuring.

MV, fsky = 0.70

nilc, fsky = 0.87

Fig. 19. Wiener-filtered potential maps in Galactic coordinates,
as in Fig. 8, plotted here in Mollweide projection. Top is the MV
reconstruction, bottom is an extended reconstruction on the nilc
component-separated map.

7.2. Point Source Correction

As can be seen in Table 1, the unresolved point source shot
noise correction in any individual band for our MV likelihood
is on the order of a few percent, reaching up to 6% for the
highest multipole bands. Averaged over the 40  L  400
band, the shot noise correction amounts to a 2% shift in the am-
plitude of Ĉ��L , which is small but non-negligible compared to
our statistical uncertainty of 4%. Physically, the amplitude of
our source corrections are reasonable; at 143 GHz we measure
Ŝ 4

143 = (1.3 ± 0.6) ⇥ 10�12 µK4. From the radio point source
model of De Zotti et al. (2010), this corresponds to an e↵ec-
tive flux cut of approximately 150mJy at this frequency, roughly
comparable to that expected for the S/N > 5 cut we make when
masking sources in our fiducial analysis (Planck Collaboration
XXVIII 2013). The shot noise measured at 217 GHz is lower, as
expected given the smaller contribution from radio sources, with
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L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di�erence between the measured
bandpowers and the fiducial best-fit �CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter �CDM model and well-motivated
extensions. Lensing also a�ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e�ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e�ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles � <� 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
�CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in �CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter �CDM model

In the six-parameter �CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth � are degenerate, with only the combination
Ase�2�, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As�2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the �CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di�ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the �CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the �CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e�ect in CTT

� .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-� degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e�ect of lensing in CTT

� (which at leading order varies
as A2

s e�2�) can separately constrain As and � without large-angle
polarization data. The variation of C��L with � in �CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For �CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e�ect on the cosmological constraints.
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Figure 2.6: Theoretical lensing power spectrum C�� (black line) and reconstruc-
tions from Planck (143GHz, 217 GHz and minimum variance ‘MV’ combination;
[12]), SPT [100] and ACT [99]. The plot is from [12].

cosmology. CMB lensing was first detected by cross-correlating lensing recon-

structions from WMAP data with other tracers of large-scale structure [96, 97].

First detections from the CMB alone were recently presented by ACT [98, 99],

SPT [100] and Planck [12] with significances of 4.6, 6.3 and 25�, respectively; see

Fig. 2.6. Further improvements are expected from the full 2500 deg2 SPT survey

and the full-mission Planck data. This data also allows for polarization-based

lensing reconstruction, which was performed for the first time very recently in

[101] (using SPT data). Less significant detections of lensing can be obtained

from the e↵ect of lensing on the CMB temperature power spectrum. Recent

detections of this e↵ect are at the 10 � level [11, 102].

2.3.3 Cosmological information probed by CMB lensing

2.3.3.1 Geometric degeneracy of the primary CMB

If the comoving size of the sound horizon at decoupling, �1, and the redshift

of decoupling, zdec, are fixed (corresponding to fixed physical densities ⌦bh2 and
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-� values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter �CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

�bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

�ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100�MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

� . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

�� . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

�m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

�mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z� . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100�� . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 2.2: CMB temperature power spectrum measured by Planck (red points),
including cosmic variance error (shaded green) and best-fit ⇤CDM model predic-
tion (solid green). The plot is from [77].

2.3 CMB lensing

We have so far neglected the gravitational deflection of CMB photons by inter-

vening large-scale structures on their way from the last-scattering surface to the

observer, because the RMS deflection of CMB photons is only ⇠ 2.5 arcmin, which

is a small e↵ect. However, these deflections are coherent over scales of several

degrees and the e↵ect of lensing on the CMB power spectrum is large enough that

it must be included for high-resolution CMB experiments like Planck to obtain

accurate cosmological parameter estimates. Indeed, lensing of the CMB can be

exploited as a precious probe of the inhomogeneous distribution of dark matter

along the line of sight which is otherwise hard to observe. Since most of the lens-

ing e↵ect is caused by dark matter structures around redshift z ⇠ 2 CMB lensing

can be used to break degeneracies that a↵ect the primary CMB to improve con-

straints on spatial curvature, neutrino masses, dark energy and modified gravity

(see e.g. [78, 79, 80, 81, 82, 83, 84, 85], and Section 2.3.3 below). For example,

recent lensing reconstructions provide evidence for dark energy from the CMB
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2.3 CMB lensing

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-� values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter �CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

�bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

�ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100�MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

� . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

�� . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

�m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

�mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z� . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100�� . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 2.2: CMB temperature power spectrum measured by Planck (red points),
including cosmic variance error (shaded green) and best-fit ⇤CDM model predic-
tion (solid green). The plot is from [77].

2.3 CMB lensing

We have so far neglected the gravitational deflection of CMB photons by inter-

vening large-scale structures on their way from the last-scattering surface to the

observer, because the RMS deflection of CMB photons is only ⇠ 2.5 arcmin, which

is a small e↵ect. However, these deflections are coherent over scales of several

degrees and the e↵ect of lensing on the CMB power spectrum is large enough that

it must be included for high-resolution CMB experiments like Planck to obtain

accurate cosmological parameter estimates. Indeed, lensing of the CMB can be

exploited as a precious probe of the inhomogeneous distribution of dark matter

along the line of sight which is otherwise hard to observe. Since most of the lens-

ing e↵ect is caused by dark matter structures around redshift z ⇠ 2 CMB lensing

can be used to break degeneracies that a↵ect the primary CMB to improve con-

straints on spatial curvature, neutrino masses, dark energy and modified gravity

(see e.g. [78, 79, 80, 81, 82, 83, 84, 85], and Section 2.3.3 below). For example,

recent lensing reconstructions provide evidence for dark energy from the CMB
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(i) If lensing field fluctuates high, CMB power is smoother and reconstruction is high
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(a) Theoretical matter cosmic variance contribution (D9) (b) Simulations

FIG. 5. (a) Theoretical matter cosmic variance contribution (D9) to the correlation of the unbinned power spectra of recon-
structed lensing potential and lensed temperature. The covariance (D9) is converted to a correlation using the same conversion

factor as in (38). (b) Measured correlation ˆcorrel(Ĉ
ˆ�
in

ˆ�
in

L�
, Ĉ

˜T ˜T
LT

� ĈTT
LT

) of the input lensing potential power and the di↵erence

of noise-free lensed and unlensed temperature powers in 1000 simulations.

FIG. 6. Left : The approximate contribution to the covariance between [L(L + 1)]2Ĉ
ˆ�ˆ�
L /(2⇡) and L0(L0 + 1)Ĉ

˜T ˜T
L0 /(2⇡) from

cosmic variance of the lenses, derived from Eq. (D9). Right : The rank-one approximation to the matrix on the left from
retaining only the largest singular value.TODOO: discuss this in main text or appendix

CT� correlations in all calculations we try to eliminate correlations between the lensing potential and the unlensed
temperature in the simulations by considering

ˆcov(Ĉ �̂�̂
L , Ĉ T̃ T̃

L0 )|CV(�) = ˆcov(Ĉ �̂
in

�̂
in

L , Ĉ T̃ T̃
L0 � ĈTT

L0 ), (52)

where Ĉ �̂
in

�̂
in is the empirical power of the input lensing potential and ĈTT is the empirical power of the unlensed

temperature. Subtracting the unlensed from the lensed empirical power spectrum also reduces the noise of the
covariance estimate because it eliminates the scatter due to cosmic variance of the unlensed temperature. We estimate
the covariance in simulations similarly to (48). As shown in Fig. 5b these measurements agree with the theoretical
expectation from (D9).
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-� values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter �CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

�bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

�ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100�MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

� . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

�� . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

�m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

�mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z� . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100�� . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Figure 2.2: CMB temperature power spectrum measured by Planck (red points),
including cosmic variance error (shaded green) and best-fit ⇤CDM model predic-
tion (solid green). The plot is from [77].

2.3 CMB lensing

We have so far neglected the gravitational deflection of CMB photons by inter-

vening large-scale structures on their way from the last-scattering surface to the

observer, because the RMS deflection of CMB photons is only ⇠ 2.5 arcmin, which

is a small e↵ect. However, these deflections are coherent over scales of several

degrees and the e↵ect of lensing on the CMB power spectrum is large enough that

it must be included for high-resolution CMB experiments like Planck to obtain

accurate cosmological parameter estimates. Indeed, lensing of the CMB can be

exploited as a precious probe of the inhomogeneous distribution of dark matter

along the line of sight which is otherwise hard to observe. Since most of the lens-

ing e↵ect is caused by dark matter structures around redshift z ⇠ 2 CMB lensing

can be used to break degeneracies that a↵ect the primary CMB to improve con-

straints on spatial curvature, neutrino masses, dark energy and modified gravity

(see e.g. [78, 79, 80, 81, 82, 83, 84, 85], and Section 2.3.3 below). For example,

recent lensing reconstructions provide evidence for dark energy from the CMB
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-� values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter �CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

�bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

�ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100�MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

� . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

�� . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

�m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

�mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
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Figure 2.2: CMB temperature power spectrum measured by Planck (red points),
including cosmic variance error (shaded green) and best-fit ⇤CDM model predic-
tion (solid green). The plot is from [77].

2.3 CMB lensing

We have so far neglected the gravitational deflection of CMB photons by inter-

vening large-scale structures on their way from the last-scattering surface to the

observer, because the RMS deflection of CMB photons is only ⇠ 2.5 arcmin, which

is a small e↵ect. However, these deflections are coherent over scales of several

degrees and the e↵ect of lensing on the CMB power spectrum is large enough that

it must be included for high-resolution CMB experiments like Planck to obtain

accurate cosmological parameter estimates. Indeed, lensing of the CMB can be

exploited as a precious probe of the inhomogeneous distribution of dark matter

along the line of sight which is otherwise hard to observe. Since most of the lens-

ing e↵ect is caused by dark matter structures around redshift z ⇠ 2 CMB lensing

can be used to break degeneracies that a↵ect the primary CMB to improve con-

straints on spatial curvature, neutrino masses, dark energy and modified gravity

(see e.g. [78, 79, 80, 81, 82, 83, 84, 85], and Section 2.3.3 below). For example,

recent lensing reconstructions provide evidence for dark energy from the CMB
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(a) Theoretical noise contribution (34) (b) Simulations (c) Simulations with empirical N̂(0) subtraction

FIG. 4. (a) Theoretical noise contribution (34) to the correlation of unbinned power spectra of lensed temperature and

reconstructed lensing potential correl(C
ˆ�ˆ�
L�

, C
˜T ˜T
LT

) as defined in (36). The acoustic peaks of the temperature power spectrum

are visible in the vertical direction. (b) Estimate of the correlation of unbinned power spectra from 1000 simulations. (c) Same

as (b) after subtracting the empirical N̂ (0) bias from Ĉ
ˆ�ˆ� as described in Section VC.

TODO: maybe replace L and L0 by L
�

and L
T

below because use this in plots now The unbinned power correlation
shown in Fig. 4a is mostly constrained to a cone-like region in the L vs L0 plane, with the maximum correlation of
⇠ 0.5% located at the first acoustic peak L0 ⇠ 200 and lensing reconstruction multipoles L ⇠ 1600�1900. While we do
not expect this peak to be relevant for Planck because basically all the statistical power comes from the reconstruction
at L . 1000, we will discuss its impact on lensing amplitude estimates more rigorously later. To understand the basic
structure of the correlation in Fig. 4a we compute approximations of (34) for the bottom and left regions in Fig. 4a,
i.e. in the limits L0 ⌧ L and L ⌧ L0.

At low temperature and high reconstruction multipoles, L0 ⌧ L, the 3j-symbols in (34) restrict the summation
from l1 = L� L0 to l1 = L+ L0. If we Taylor expand (34) in l1 around L and approximate Ln � Ln�1, we get (see
[7] for a similar calculation)

correl(Ĉ �̂�̂

L

, Ĉ T̃ T̃

L

0
,expt)

L

0⌧L

disconn. ⇡
[L(L+ 1)]2A

L

8⇡

p
(2L0 + 1)(2L+ 1)

L0(L0 + 1)C T̃ T̃

L

0

L(L+ 1)C T̃ T̃

L,expt

. (37)

As shown in Fig. 1 the first term slightly increases with L. The last term peaks at the first acoustic peak L0 ⇠ 200 and
at the reconstruction multipole L ⇠ 1600 � 1900 where the observed temperature power C T̃ T̃

L,expt is minimal (for the
Planck-like noise and beam considered here). TODO: 4 In this region (37) gives ⇠ 0.004 � 0.005, which agrees with
Fig. 4a. Eq. (37) also implies that lower noise in the temperature power spectrum would move the peak position to
higher reconstruction multipoles L. The cone structure in Fig. 4a based at (L,L0) ⇠ (1600� 1900, 200) is due to the
fact that the summand that we expanded around L actually depends on the summation multipole l1. The maximum
value of the summand at l1 ⇠ 1600 � 1900 can be picked up by the sum if L � L0 . (1600 � 1900) . L + L0, which
imposes a cone-like constraint in the L vs. L0 plane. A similar argument can be applied for the cone patterns in the
L . 200 region.

For high temperature and low reconstruction multipoles, L ⌧ L0, we can Taylor expand (34) in l1 around L0 to get

correl(Ĉ �̂�̂

L

, Ĉ T̃ T̃

L

0
,expt)

L⌧L

0

disconn. ⇡
[L(L+ 1)]2A2

L

2⇡(A
L

+ C��

L

)

 
C T̃ T̃

L

0

C T̃ T̃

L

0
,expt

!2
1

2

p
(2L+ 1)(2L0 + 1)

8
<

:1 +
d lnC T̃ T̃

L

0

d lnL0 +
3

8

 
d lnC T̃ T̃

L

0

d lnL0

!2
9
=

; ,

(38)

where we neglected N (1)
L

and used A
L

= N (0)
L

. The logarithmic derivative in the curly brackets peaks between
acoustic peaks and troughs at L0 ⇠ 350, 625, 925, 1225, 1550, 1850 . . . , which agrees with the peak positions of the full
correlation shown in Fig. 4a.5 Its values vary between ⇠ �11 and ⇠ 1, i.e. the curly bracket in (38) is at most ⇠ 36

4 TODO: maybe mention that o↵-diagonal � power auto correlation from Duncan also peaks at around (l, l) = (1800� 1900, 1800� 1900)
(not visible in Duncan’s plot because it’s cut o↵ at 2000). can probably understand this with similar approximations as done here. this
might be useful because Duncan’s numbers disagreed with earlier evaluation by Cooray et al. However, Duncan has checked against
sims, so it’s clear he is right and Cooray is wrong. maybe put this in footnote? or include plot of theoretical and measured phi auto
power correlation? not really needed b/c it’s in 1008 paper already.

5 Peaks at higher L0 are suppressed by the noise in the temperature power spectrum.

SimulationsTheory

Peak at L# ~ 1800 = minimum of beam-deconvolved noisy temperature power C ˜T ˜T
expt

(ii) If unlensed CMB fluctuates high, CMB power and Gaussian rec. noise N(0) are high

➟ Derives from disconnected CMB 6-point 

Correlation of unbinned power spectra is up to ~0.5% (at very high L#):

cov(

ˆC
ˆ�rec

ˆ�rec

L�
, ˆC

˜T ˜T
LT ,expt)

O(�0
)

disc. =

@(2 ˆN (0)

L�
)

@ ˆC ˜T ˜T
LT ,expt

2

2LT + 1

⇣
C

˜T ˜T
LT ,expt

⌘
2
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Decorrelating power spectra
➟ Can remove noise contribution (ii) with realisation-dependent bias correction

Ĉ
ˆ�ˆ�
L � 2N̂ (0)

L = Ĉ
ˆ�ˆ�
L �

X

L0

@(2N̂ (0)

L )

@Ĉ ˜T ˜T
L0,expt

Ĉ
˜T ˜T
L0,expt
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2. Magnitude and structure of the correlation matrix

In Fig. 4a we plot the power correlation resulting from the power covariance (36) (denoting L� = L and LT = L0
for convenience),

correl(Ĉ �̂�̂
L�

, Ĉ T̃ T̃
LT ,expt) =

cov(Ĉ �̂�̂
L�

, Ĉ T̃ T̃
LT ,expt)q

varG(C
��
L�

+ N
(0)
L�

+ N
(1)
L�

) varG(C T̃ T̃
LT ,expt)

. (38)

This is the correlation if the power spectra are not binned. If the covariance is broad-band (i.e. roughly constant
over the bin area) the correlation of (su�ciently finely) binned power spectra will increase roughly proportionally to
the square root of the product of the two bin widths.5 TODO: check footnote properly, actually not sure what’s the
precise condition here. The denominator in (38) contains the beam-deconvolved noisy temperature power spectrum
(19) so that high temperature multipoles are suppressed.

(a) Theoretical noise contribution (36) (b) Simulations (c) Simulations with empirical N̂(0) subtraction

FIG. 4. (a) Theoretical noise contribution (36) to the correlation of unbinned power spectra of lensed temperature and

reconstructed lensing potential correl(C
ˆ�ˆ�
L�

, C
˜T ˜T
LT

) as defined in (38). The acoustic peaks of the temperature power spectrum

are visible in the vertical direction. (b) Estimate of the correlation of unbinned power spectra from 1000 simulations. (c) Same

as (b) after subtracting the empirical N̂ (0) bias (18) from Ĉ
ˆ�ˆ�.

The unbinned power correlation shown in Fig. 4a is mostly constrained to a cone-like region in the L� vs LT plane,
with the maximum correlation of ⇠ 0.5% located at the first acoustic peak LT ⇠ 200 and lensing reconstruction
multipoles L� ⇠ 1600 � 1900. While we do not expect this peak to be relevant for Planck because basically all the
statistical power comes from the reconstruction at L� . 1000, we will discuss its impact on lensing amplitude estimates
more rigorously later. To understand the basic structure of the correlation in Fig. 4a we compute approximations of
(36) for the bottom and left regions in Fig. 4a, i.e. in the limits LT ⌧ L� and L� ⌧ LT .

At low temperature and high reconstruction multipoles, LT ⌧ L�, the 3j-symbols in (36) restrict the summation
from l1 = L� � LT to l1 = L� + LT . If we Taylor expand (36) in l1 around L� and approximate Ln

� � Ln�1
� , we get

(see [29] for a similar calculation)

correl(Ĉ �̂�̂
L�

, Ĉ T̃ T̃
LT ,expt)

LT⌧L�

disconn. ⇡
[L�(L� + 1)]2AL�

8⇡

q
(2LT + 1)(2L� + 1)

LT (LT + 1)C T̃ T̃
LT

L�(L� + 1)C T̃ T̃
L�,expt

. (39)

As shown in Fig. 1 the first term slightly increases with L�. The last term peaks at the first acoustic peak LT ⇠ 200

and at the reconstruction multipole L� ⇠ 1600�1900 where the observed temperature power C T̃ T̃
L�,expt

is minimal (for

the Planck-like noise and beam considered here). TODO: 6 In this region (39) gives ⇠ 0.4� 0.5%, which agrees with

5 This is because a broad-band covariance is una↵ected by binning while the power variances decrease proportionally to the bin widths
(if the power variance and covariance are slowly varying inside a bin). To see this assume a constant covariance covL�LT

= c. Then the

binned covariance is
P

L�,LT
c/(�L��LT ) = c where the sum goes over the bin area. In contrast, the power variance is due to the auto-

covariance, which is dominated by its diagonal and not broad-band. Assuming that the diagonal part is constant, covL
1

L
2

= �L
1

L
2

d,
yields for the binned variance

P
L

1

,L
2

�L
1

L
2

d/(�L)2 = d/(�L).
6 TODO: maybe mention that o↵-diagonal � power auto correlation from Duncan also peaks at around (l, l) = (1800� 1900, 1800� 1900)
(not visible in Duncan’s plot because it’s cut o↵ at 2000). can probably understand this with similar approximations as done here. this
might be useful because Duncan’s numbers disagreed with earlier evaluation by Cooray et al. However, Duncan has checked against
sims, so it’s clear he is right and Cooray is wrong. maybe put this in footnote? or include plot of theoretical and measured phi auto
power correlation? not really needed b/c it’s in 1008 paper already.

Theory
Simulations w/o 

realisation-dep.        .N̂ (0)
Simulations with 

realisation-dep.        .N̂ (0)

➟ This also mitigates the off-diagonal reconstruction power auto-covariance 
(for the same reason); can be understood from optimal trispectrum estimation
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Obtain realisation-dependent           bias mitigation also from optimal trispectrum 
estimator using Edgeworth-expansion of lensed temperature around Gaussian:

OPTIMAL TRISPECTRUM ESTIMATION

N̂ (0)

realisation-indep.
 N(0)

P (T ) =

⇢
1 +

1

24
hTiTjTkTlic


T̄iT̄j T̄kT̄l �

�
C�1

ij T̄kT̄l + 5 perms
�
+
�
C�1

ij C�1
kl + 2 perms

���

⇥e�TiC
�1
ij Tj/2

p
det(2⇡C)

realisation-dep.
2N̂ (0)

reconstruction power
Ĉ �̂rec�̂rec +-

Ti = lensed temperature
Cij = <TiTj>
T̄i = C�1

ij Tj

lensing 
trispectrum



Impact of temperature-lensing power covariance on lensing amplitude A:

Rescale lensing power spectrum

Estimate from reconstruction power spectrum,

and from smoothing of temperature power spectrum, 

➟                    is linearly related to 

IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆA, ˆA0
)

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )
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IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )
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Full theory
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,
ˆ A
0 )

(i)

With realisation-
dependent        .N̂ (0)

IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

MS, Challinor, Hanson, Lewis 1308.0286



IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

➟ Neglecting                                    underestimates error of joint amplitude estimate by
cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

➟ Temperature-lensing power-covariance is 

negligible for combined amplitude estimate
(and for cosmological parameters)

MS, Challinor, Hanson, Lewis 1308.0286

��A
joint

⇠ correl(

ˆA, ˆA0
)/2 ⇠ 3.5% (with realisation-dependent         , 

otherwise ~ 5%)
N̂ (0)



IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )
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Physical reasons for smallness of amplitude correlation

(i) Lens cosmic variance

cov(A,A’) is limited by the small number of C## modes affecting acoustic region of
        (including more lensing modes in A[C##] reduces cov(A,A’) because there are 
increasingly more lensing modes in A[C##] whose fluctuations don’t enter A’[       ]).

correl(A,A’) due to cosmic variance of these modes is diluted by CMB cosmic 
variance and instrumental noise (because A and A’ are not limited by cosmic 
variance of the lenses)

C T̃ T̃

C T̃ T̃



IMPACT OF                        .
LENSING AMPLITUDE

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

MS, Challinor, Hanson, Lewis 1308.0286

Physical reasons for smallness of amplitude correlation

(i) Lens cosmic variance

cov(A,A’) is limited by the small number of C## modes affecting acoustic region of
        (including more lensing modes in A[C##] reduces cov(A,A’) because there are 
increasingly more lensing modes in A[C##] whose fluctuations don’t enter A’[       ]).

correl(A,A’) due to cosmic variance of these modes is diluted by CMB cosmic 
variance and instrumental noise (because A and A’ are not limited by cosmic 
variance of the lenses)

C T̃ T̃
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FIG. 12. Contribution of di↵erent CMB multipoles l to the (S/N)2 of the lensing amplitude for estimators based on the CMB
power spectrum [blue; Eq. (A1)] and on the lensing reconstruction [red; Eq. (A2)] for l�

max

= 10 (left) and l�
max

= 500 (right).
The approximation in Eq. (A3) for large-scale lenses is shown in black dashed in the left plot. Since we are not interested in
the total S/N but only in its distribution over di↵erent CMB scales, all curves are normalised such their integral over l is unity.

sums over L and l1 in Eq. (A2) by restricting ourselves to very large-scale lenses, l�max ⌧ l, and using the large scale
approximation for N (0) derived in [26] [see their Eq. (19)], to find

s�̂�̂
l ⇡ s�̂�̂

l,approx = f(l�min, l�max)
1

varG(C T̃ T̃
l,expt)

2

4
 

C T̃ T̃
l

d ln(l2C T̃ T̃
l )

d ln l

!2

+
1

2

 
C T̃ T̃

l
d ln C T̃ T̃

l

d ln l

!2
3

5 , [l�max . O(10)]. (A3)

Here, the prefactor f depends on the minimum and maximum reconstruction multipole but not on the CMB multipole
l. The terms in square brackets have the form of the quadrature sum of the information in convergence and shear.
Convergence changes locally the angular scale of the CMB anisotropies and so would contribute nothing to the (S/N)2

for a scale-invariant spectrum, l2Cl = const., while shear contributes nothing for a white-noise spectrum, Cl = const.15

Thus, for large-scale lenses, the (S/N)2 for the reconstruction-based amplitude gets most contributions from CMB
scales where the gradient of the CMB power spectrum is maximal, i.e. between acoustic peaks and troughs (see red
and black curves in Fig. 12a).

In reality, temperature multipoles that are not precisely at peaks or troughs and not precisely in between them will
a↵ect both amplitude estimates, which implies a small amplitude correlation. Intermediate- and small-scale lenses can
mix CMB modes over multipole ranges comparable to the acoustic peak separation so that they are a↵ected by wider
ranges of CMB multipoles than argued above (see red curve in Fig. 12b), which implies a somewhat larger amplitude
correlation. However, since the CMB scales that are most important for the reconstruction still have negligible impact
on the amplitude estimated from the temperature power, we expect the correlation of the amplitudes to stay rather
small.

2. Cosmic variance of the lenses

We now consider the contribution of cosmic variance of the lenses to the covariance of the lensing amplitude
estimates given in Eq. (56). It is instructive to consider a toy-model where the reconstruction “noise” power is

proportional to C��, i.e. N (0)
l + N (1)

l = �C��
l . Taking the limit � ! 0 is equivalent to being able to observe �

directly with no measurement error, while � ! 1 corresponds to there being no information in the reconstruction.

With N (0)
l + N (1)

l = �C��
l , the weighting of the reconstruction power spectrum in Â is the same as for an ideal

reconstruction (i.e. one with no N (0) and N (1) noise). Provided we then determine Â from all those � modes that

15 The relation between large-scale lenses and the induced local convergence and shear is discussed in detail by [45], who also find
agreement between the (S/N)2 of a combined convergence and shear estimate with the large-scale limit of the (S/N)2 of the trispectrum
reconstruction. This correspondence has also been used to approximate the squeezed limit of the ISW-lensing bispectrum [30].

(ii) CMB cosmic variance

Roughly disjoint (independently 
fluctuating) scales in the CMB contribute 
to amplitude determination from peak-
smearing and to lens reconstruction

S/
N

 p
er

 C
M

B 
m

od
e



Impact of                                    on phys. params.

Joint data vector:

Joint covariance

Fisher matrix: 

➟ Fisher errors increase by at most 0.7% if                                    is included

IMPACT OF                        .
PHYSICAL PARAMETERS

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

p = (⌦bh
2,⌦ch

2, h, ⌧, As, ns,⌦⌫h
2,⌦K)

Ĉ = (Ĉ
˜T ˜T
expt

, Ĉ
ˆ�ˆ� � 2N̂ (0) +N (0))

Fij =

X

LL0

@CL

@pi
(cov

�1

joint

)LL0
@CL0

@pj

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

cov(

ˆC �̂rec�̂rec

L , ˆC T̃ T̃
L0 )

covLL0, joint ⌘ cov(

ˆCL, ˆCL0) =

 
�LL0

varG(C
˜T ˜T
L,expt) cov(

ˆC
˜T ˜T
L , ˆC

ˆ�rec
ˆ�rec

L0 )

cov(

ˆC
ˆ�rec

ˆ�rec

L , ˆC
˜T ˜T
L0 ) �LL0

varG(h ˆC
ˆ�ˆ�
L i)

!

➟ Temperature-lensing power-covariance negligible for physical parameter errors

MS, Challinor, Hanson, Lewis 1308.0286



So far assumed likelihood based on reconstruction power                 instead of         map
➟ Well established for temperature, but unclear for (non-Gaussian) reconstruction

➟ Compare two lensing-likelihood models: 

1. Gaussian in        :

2. Gaussian in                 (with parameter-independent covariance):

➟ Estimate lensing amplitude (and tilt) from both likelihoods,
compare scatter of best-fit parameter vs. likelihood width 

CMB LENSING RECONSTRUCTION
LIKELIHOOD FORM

�̂recĈ �̂rec�̂rec

�̂rec

Ĉ �̂rec�̂rec
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So far assumed likelihood based on reconstruction power                 instead of         map
➟ Well established for temperature, but unclear for (non-Gaussian) reconstruction

➟ Compare two lensing-likelihood models: 

1. Gaussian in        :

2. Gaussian in                 (with parameter-independent covariance):

➟ Estimate lensing amplitude (and tilt) from both likelihoods,
compare scatter of best-fit parameter vs. likelihood width 

CMB LENSING RECONSTRUCTION
LIKELIHOOD FORM
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Scatter of best-fit lensing amplitude A    vs.    likelihood width in single realisations

CMB LENSING RECONSTRUCTION
LIKELIHOOD TESTS
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FIG. 1. Coloured thin: Lensing amplitude likelihood for 15 realisations, using the lensing reconstruction up to l�
max

= 2650.
Each curve peaks at some best-fit parameter Â. Black bold: Gaussian with mean and standard deviation given by the mean
and standard deviation of Â averaged over 1000 realisations. The upper panel shows L

1

from (3), while the lower panel shows
L

2

given by (4). All curves are normalised such their integral over A is 1. TODO: maybe comment on l
max

dependence

B. Two-parameter likelihood tests with lensing amplitude and lensing tilt

Recovering the lensing amplitude with the likelihood L
2

allowed us to check our understanding of the lensing power
covariance. To test the likelihood approximation L

2

we use the lensing reconstruction to additionally constrain the
lensing tilt n defined by

C��
l = A

✓
l

l⇤

◆n

C��
l |

fid

. (5)

The pivot multipole l⇤ = 124 is chosen such that the Fisher matrix associated with L
2

is diagonal (for l�
max

= O(103)),
implying that the parameters A and n are approximately uncorrelated. The likelihood for 9 realisations is compared
with the scatter of the best fit parameters over 1000 realisations in Fig. 2. Including the non-diagonal lensing power
covariance (??) clearly improves the agreement. Note that we have binned the reconstruction power with a binning
scheme which has been used for several Planck studies TODO: cite, maybe mention that in the end Planck analysis
in March 2013 used wider bins and smaller L range and has bin boundaries at

l = 2, 13, 35, 75, 115, 155, 195, . . . (increasing by 40 above l = 35). (6)

Similar results for the unbinned case will be summarised in Fig. 3 below.
To quantify the agreement of the likelihood for individual realisations with the scatter of the best fit parameters,

we compute the areas of the confidence contours shown in Fig. 2. In Fig. 3 we show the fractional deviation of the
areas of the Gaussian, with sample mean and sample covariance of the best fit parameters, from the average areas of
the likelihood for individual realisations (i.e. the fractional deviation of grey background areas from average solid line
areas in Fig. 2).

Neglecting the o↵-diagonal contribution to the lensing power covariance, which is largest at high reconstruction
multipoles [1], underestimates the errors significantly, particularly for l�

max

& 1000 where the confidence areas disagree

Gaussian
in       .�̂rec
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Scatter of best-fit lensing amplitude A    vs.    likelihood width in single realisations

CMB LENSING RECONSTRUCTION
LIKELIHOOD TESTS
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FIG. 1. Coloured thin: Lensing amplitude likelihood for 15 realisations, using the lensing reconstruction up to l�
max

= 2650.
Each curve peaks at some best-fit parameter Â. Black bold: Gaussian with mean and standard deviation given by the mean
and standard deviation of Â averaged over 1000 realisations. The upper panel shows L

1

from (3), while the lower panel shows
L

2

given by (4). All curves are normalised such their integral over A is 1. TODO: maybe comment on l
max

dependence

B. Two-parameter likelihood tests with lensing amplitude and lensing tilt

Recovering the lensing amplitude with the likelihood L
2

allowed us to check our understanding of the lensing power
covariance. To test the likelihood approximation L

2

we use the lensing reconstruction to additionally constrain the
lensing tilt n defined by

C��
l = A
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. (5)

The pivot multipole l⇤ = 124 is chosen such that the Fisher matrix associated with L
2

is diagonal (for l�
max

= O(103)),
implying that the parameters A and n are approximately uncorrelated. The likelihood for 9 realisations is compared
with the scatter of the best fit parameters over 1000 realisations in Fig. 2. Including the non-diagonal lensing power
covariance (??) clearly improves the agreement. Note that we have binned the reconstruction power with a binning
scheme which has been used for several Planck studies TODO: cite, maybe mention that in the end Planck analysis
in March 2013 used wider bins and smaller L range and has bin boundaries at

l = 2, 13, 35, 75, 115, 155, 195, . . . (increasing by 40 above l = 35). (6)

Similar results for the unbinned case will be summarised in Fig. 3 below.
To quantify the agreement of the likelihood for individual realisations with the scatter of the best fit parameters,

we compute the areas of the confidence contours shown in Fig. 2. In Fig. 3 we show the fractional deviation of the
areas of the Gaussian, with sample mean and sample covariance of the best fit parameters, from the average areas of
the likelihood for individual realisations (i.e. the fractional deviation of grey background areas from average solid line
areas in Fig. 2).

Neglecting the o↵-diagonal contribution to the lensing power covariance, which is largest at high reconstruction
multipoles [1], underestimates the errors significantly, particularly for l�

max

& 1000 where the confidence areas disagree
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FIG. 1. Coloured thin: Lensing amplitude likelihood for 15 realisations, using the lensing reconstruction up to l�
max

= 2650.
Each curve peaks at some best-fit parameter Â. Black bold: Gaussian with mean and standard deviation given by the mean
and standard deviation of Â averaged over 1000 realisations. The upper panel shows L

1

from (3), while the lower panel shows
L

2

given by (4). All curves are normalised such their integral over A is 1. TODO: maybe comment on l
max

dependence

B. Two-parameter likelihood tests with lensing amplitude and lensing tilt

Recovering the lensing amplitude with the likelihood L
2

allowed us to check our understanding of the lensing power
covariance. To test the likelihood approximation L

2

we use the lensing reconstruction to additionally constrain the
lensing tilt n defined by

C��
l = A
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. (5)

The pivot multipole l⇤ = 124 is chosen such that the Fisher matrix associated with L
2

is diagonal (for l�
max

= O(103)),
implying that the parameters A and n are approximately uncorrelated. The likelihood for 9 realisations is compared
with the scatter of the best fit parameters over 1000 realisations in Fig. 2. Including the non-diagonal lensing power
covariance (??) clearly improves the agreement. Note that we have binned the reconstruction power with a binning
scheme which has been used for several Planck studies TODO: cite, maybe mention that in the end Planck analysis
in March 2013 used wider bins and smaller L range and has bin boundaries at

l = 2, 13, 35, 75, 115, 155, 195, . . . (increasing by 40 above l = 35). (6)

Similar results for the unbinned case will be summarised in Fig. 3 below.
To quantify the agreement of the likelihood for individual realisations with the scatter of the best fit parameters,

we compute the areas of the confidence contours shown in Fig. 2. In Fig. 3 we show the fractional deviation of the
areas of the Gaussian, with sample mean and sample covariance of the best fit parameters, from the average areas of
the likelihood for individual realisations (i.e. the fractional deviation of grey background areas from average solid line
areas in Fig. 2).

Neglecting the o↵-diagonal contribution to the lensing power covariance, which is largest at high reconstruction
multipoles [1], underestimates the errors significantly, particularly for l�

max

& 1000 where the confidence areas disagree
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Scatter of best-fit lensing amplitude A    vs.    likelihood width in single realisations

CMB LENSING RECONSTRUCTION
LIKELIHOOD TESTS
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FIG. 1. Coloured thin: Lensing amplitude likelihood for 15 realisations, using the lensing reconstruction up to l�
max

= 2650.
Each curve peaks at some best-fit parameter Â. Black bold: Gaussian with mean and standard deviation given by the mean
and standard deviation of Â averaged over 1000 realisations. The upper panel shows L

1

from (3), while the lower panel shows
L

2

given by (4). All curves are normalised such their integral over A is 1. TODO: maybe comment on l
max

dependence

B. Two-parameter likelihood tests with lensing amplitude and lensing tilt

Recovering the lensing amplitude with the likelihood L
2

allowed us to check our understanding of the lensing power
covariance. To test the likelihood approximation L

2

we use the lensing reconstruction to additionally constrain the
lensing tilt n defined by

C��
l = A

✓
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◆n
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l |
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. (5)

The pivot multipole l⇤ = 124 is chosen such that the Fisher matrix associated with L
2

is diagonal (for l�
max

= O(103)),
implying that the parameters A and n are approximately uncorrelated. The likelihood for 9 realisations is compared
with the scatter of the best fit parameters over 1000 realisations in Fig. 2. Including the non-diagonal lensing power
covariance (??) clearly improves the agreement. Note that we have binned the reconstruction power with a binning
scheme which has been used for several Planck studies TODO: cite, maybe mention that in the end Planck analysis
in March 2013 used wider bins and smaller L range and has bin boundaries at

l = 2, 13, 35, 75, 115, 155, 195, . . . (increasing by 40 above l = 35). (6)

Similar results for the unbinned case will be summarised in Fig. 3 below.
To quantify the agreement of the likelihood for individual realisations with the scatter of the best fit parameters,

we compute the areas of the confidence contours shown in Fig. 2. In Fig. 3 we show the fractional deviation of the
areas of the Gaussian, with sample mean and sample covariance of the best fit parameters, from the average areas of
the likelihood for individual realisations (i.e. the fractional deviation of grey background areas from average solid line
areas in Fig. 2).

Neglecting the o↵-diagonal contribution to the lensing power covariance, which is largest at high reconstruction
multipoles [1], underestimates the errors significantly, particularly for l�

max

& 1000 where the confidence areas disagree

Gaussian
in       .�̂rec

Gaussian
in              .Ĉ �̂rec�̂rec
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FIG. 1. Coloured thin: Lensing amplitude likelihood for 15 realisations, using the lensing reconstruction up to l�
max

= 2650.
Each curve peaks at some best-fit parameter Â. Black bold: Gaussian with mean and standard deviation given by the mean
and standard deviation of Â averaged over 1000 realisations. The upper panel shows L

1

from (3), while the lower panel shows
L

2

given by (4). All curves are normalised such their integral over A is 1. TODO: maybe comment on l
max

dependence

B. Two-parameter likelihood tests with lensing amplitude and lensing tilt

Recovering the lensing amplitude with the likelihood L
2

allowed us to check our understanding of the lensing power
covariance. To test the likelihood approximation L

2

we use the lensing reconstruction to additionally constrain the
lensing tilt n defined by

C��
l = A
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l |
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. (5)

The pivot multipole l⇤ = 124 is chosen such that the Fisher matrix associated with L
2

is diagonal (for l�
max

= O(103)),
implying that the parameters A and n are approximately uncorrelated. The likelihood for 9 realisations is compared
with the scatter of the best fit parameters over 1000 realisations in Fig. 2. Including the non-diagonal lensing power
covariance (??) clearly improves the agreement. Note that we have binned the reconstruction power with a binning
scheme which has been used for several Planck studies TODO: cite, maybe mention that in the end Planck analysis
in March 2013 used wider bins and smaller L range and has bin boundaries at

l = 2, 13, 35, 75, 115, 155, 195, . . . (increasing by 40 above l = 35). (6)

Similar results for the unbinned case will be summarised in Fig. 3 below.
To quantify the agreement of the likelihood for individual realisations with the scatter of the best fit parameters,

we compute the areas of the confidence contours shown in Fig. 2. In Fig. 3 we show the fractional deviation of the
areas of the Gaussian, with sample mean and sample covariance of the best fit parameters, from the average areas of
the likelihood for individual realisations (i.e. the fractional deviation of grey background areas from average solid line
areas in Fig. 2).

Neglecting the o↵-diagonal contribution to the lensing power covariance, which is largest at high reconstruction
multipoles [1], underestimates the errors significantly, particularly for l�

max

& 1000 where the confidence areas disagree

➟ Including non-Gaussianity of reconstruction is important to get correct error bar
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CMB LENSING RECONSTRUCTION
LIKELIHOOD TESTS

For      , we do not test the likelihood but rather the reconstruction power covariance
(because                 ) 

➟ Additionally vary lensing tilt n to test      :
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CMB LENSING RECONSTRUCTION
LIKELIHOOD TESTS: QUANTITATIVELY
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FIG. 2. Likelihood test if lensing amplitude A (horizontal axis) and tilt n (vertical axis) are varied for pivot l⇤ = 124 in
(5). Thick lines: Contours of 68%, 95% and 99.7% confidence level of the likelihood L

2

(4) evaluated for 9 realisations. Gray
filled ellipses: Contours of Gaussian with central point and covariance matrix estimated from 1000 realisations. The lensing
power auto-covariance cov�� is assumed to be diagonal in (a), while (b) also includes the non-diagonal contribution (??). The
reconstructed lensing power for multipoles up to l�

max

= 1002 is binned according to (6). TODO: what is exact lmax if binning
is used?. why does binning give worse results for (c)? is there a remaining cov that we did not model? measure cov of rec phi
if emp N0 subtracted and compare with naive matter CV prediction using unified formula with derivatives.
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FIG. 3. Quantitative comparison of confidence contour areas in the A vs. n plane for the likelihood L
2

. We show the fractional
deviation of the confidence areas of Gaussians (with sample mean and sample covariance of best fit parameters) from the
average confidence areas in a single realisation. Positive values mean that the errors extracted from the likelihood for a single
realisation underestimate the scattering of the best fit parameters. Results are shown for unbinned power spectra (dashed
lines) and power spectra binned according to (6) (solid lines); and for confidence levels 68% (black), 95% (grey) and 99.7%
(light grey). The maximum multipole of the reconstructed lensing power is varied along the horizontal axis (only for three
values which are connected by straight lines to guide the eye). The lensing power auto-covariance cov�� in L

2

is assumed to
be diagonal in (a), while (b) also includes the non-diagonal contribution (??). (c) is for empirical N̂ (0) bias correction and
diagonal covariance. The ellipses in Fig. 2 correspond to the crosses at l

max

= 1002 in (a) and (b). TODO: what is exact lmax
if binning is used? check if binscheme is really 3. looks okay.TODO: include conservative binning
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Understand non-Gaussianity of #rec and correlation with temperature analytically

Found methods to treat/mitigate both

This has significantly simplified joint analysis of          and #rec for Planck:

➟ Likelihoods can be modeled separately,

➟ Non-Gaussianity of #rec modeled by likelihood that’s Gaussian in

CONCLUSIONS
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C T̃ T̃

lnL(C T̃ T̃ ,�rec) = lnL(C T̃ T̃ ) + lnL2(�rec)

no cross-term!
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